Please sign in to download the files. A new tab will open where you can login/register.


AgroChemical Screening Libraries

The term “agrichemical” (or “agrochemical”) usually refers to a broad range of pesticides, including insecticides, herbicides, fungicides and nematicides. It may also refer to synthetic fertilizers, hormones and other chemical growth agents.

High‐throughput screening (HTS) is an increasingly important approach of sustaining and improving the flow of novel products to the marketplace within the agrochemical industry [1].

Life Chemicals has developed several screening compound libraries of agrochemical-like molecules for agrochemical discovery projects. At the first stage, the following restrictions were applied to the Life Chemicals HTS Compound Collection:

  • 250 < MW < 500
  • 0.3 < ClogP < 4.5
  • HBD ≤ 2
  • HBA < 10
  • RotB < 11

Then, compounds were filtered by 2D fingerprint similarity search (Tanimoto 80 % cut-off) against the reference set of known agrochemical compounds (data extracted from In addition, a substructure search was applied. Substructural cores of each class of known agrochemical compounds (fungicides, insecticides, herbicides, microbiocides) were selected from the literature [2–19] and relevant on-line databases. Selection of compounds that belong to the corresponding chemical classes was performed with SYBYL-X and MDL ISIS software packages. 

Presented below is a list of agrochemical-like compound sets with corresponding chemical classes indicated. Custom compound selection based on specific parameters can be performed on request, compound cherry-picking is available. Please, contact us at for any details and quotations.

Insecticide-like compounds
(1,800 in-stock compounds)
  • Alkyl phthalates
  • Chloronicotinyl compounds
  • Diacylhydrazines
  • N-Methyl carbamates
  • Organochlorine compounds (oligochlorinated)
  • Organophosphorus compounds
  • Pheromones
  • Chlorinated pyrazoles
Herbicide analogues
(7,700 in-stock compounds)
  • 2,6-Dinitroanilines
  • Imidazolinones
  • Dinitrophenols
  • Sulfonylurea
  • Benzoic acids, chlorine substituted
  • Benzoyl urea, chlorine substituted
  • Bipyridilium compounds
  • Chlorophenoxy acids/esters
  • Chloropyridinyls
  • Cyclohexenones
  • Thiocarbamates
  • Triazines
  • Uracils
  • N-phenyl, N'-alkyl substituted ureas
  • N-alkyl, N'-thiadiazole substituted ureas
  • Bis-carbamates
Microbiocide analogues
(1,900 in-stock compounds)
  • Chlorinated phenols
  • Hydantoins
  • Isothiazolones
  • Phenols
  • Quaternary ammonium compounds
 Fungicide-like compounds 
(1,200 in-stock compounds)
  • Azoles
  • Benzimidazoles
  • Dicarboxamides
  • Chlorinated benzenes

Additionally Life Chemicals has designed a dedicated
Antifungal Library of over 3,900 drug-like screening compounds which are potential antifungal agents. The screening compound set was prepared with a 2D fingerprint similarity search (Tanimoto 80 % cut-off) against a reference set of 21,450 molecules with reported antifungal activity (activity data threshold < 10 μM, extracted from ChEBI, BindingDB and ChEMBL databases) against different fungi species:

  • Agaricus bisporus
  • Ajellomyces capsulatus
  • Alternaria (A. alternata, A. kikuchiana, A. mali, A. solani, A. tenuis, A. benhamiae)
  • Arthroderma (A. cajetani, A. otae)
  • Ascochyta
  • Aspergillus (A. clavatus, A. flavus, A. fumigatus, A. niger, A. ochraceus, A. oryzae, A. parasiticus)
  • Athelia rolfsii
  • Bionectria ochroleuca
  • Bipolaris oryzae
  • Blumeria graminis
  • Botryosphaeria dothidea,
  • Botryotinia fuckeliana
  • Candida (C. albicans, C. dubliniensis, C. glabrata, C. parapsilosis, C. sake, C. tropicalis)
  • Ceratobasidium cereale
  • Ceratocystis paradoxa
  • Cercospora beticola
  • Cladosporium (C. cladosporioides, C. sphaerospermum)
  • Clavispora lusitaniae
  • Cochliobolus heterostrophus,
  • Cochliobolus lunatus
  • Cochliobolus pallescens
  • Colletotrichum (C. capsica, C. coccodes, C. gloeosporioides, C. lindemuthianum, C. truncatum)
  • Corticium
  • Corynespora cassiicola
  • Cryphonectria parasitica
  • Cryptococcus (C. gattii, C. neoformans)
  • Cyberlindnera jadinii
  • Cytospora
  • Diaporthe longicolla
  • Diplodia seriata
  • Emericella nidulans
  • Encephalitozoon cuniculi
  • Epidermophyton floccosum,
  • Fusarium (F. culmorum, F. decemcellulare, F.equiseti, F.graminearum, F.oxysporum, F.solani, F.udum)
  • Galactomyces geotrichum
  • Gibberella (G. fujikuroi, G. intermedia, G. moniliformis, G. zeae)
  • Gloeophyllum trabeum
  • Glomerella (G. acutata, G. cingulate, G. tucumanensis)
  • Helminthosporium
  • Hypocrea (H. koningii, H. lixii, H. rufa)
  • Kluyveromyces marxianus
  • Laetiporus sulphureus
  • Lasiodiplodia theobromae
  • Lenzites betulinus
  • Leptosphaeria maculans
  • Macrophomina phaseolina
  • Magnaporthe (M. grisea, M. oryzae)
  • Meyerozyma guilliermondii
  • Microdochium nivale
  • Microsporum gypseum
  • Monilinia laxa
  • Monographella nivalis var. nivalis
  • Mycogone perniciosa
  • Mycosphaerella arachidis
  • Neofusicoccum (N. luteum, N. ribis)
  • Oculimacula (O. acuformis, O. yallundae)
  • Penicillium (P. crustosum, P. expansum, P. italicum, P. marneffei)
  • Pestalotiopsis microspora
  • Phomopsis (P. asparagi, P. obscurans)
  • Physalospora pyricola
  • Pichia (P. kudriavzevii, P. norvegensis)
  • Pleurotus ostreatus
  • Pneumocystis (P. carinii, P. jirovecii)
  • Podosphaera (P. fuliginea, P. xanthii)
  • Puccinia recondita
  • Rhizoctonia (R. bataticola, R. solani)
  • Rhizomucor
  • Rhizopus oryzae
  • Saccharomyces cerevisiae
  • Sclerotinia sclerotiorum
  • Scopulariopsis
  • Sporothrix schenckii
  • Syncephalastrum racemosum
  • Thanatephorus cucumeris
  • Thielaviopsis basicola
  • Trametes versicolor
  • Trichoderma hamatum
  • Trichophyton (T. interdigitale, T. mentagrophytes, T. rubrum, T. tonsurans, T. violaceum, T. asahii)
  • Valsa mali
  • Verticillium (V. albo-atrum, V. dahlia)
  • Villosiclava virens



  1. Ridley, S. M.; Elliott, A. C.; Yeung, M.; Youle, D. High-Throughput Screening as a Tool for Agrochemical Discovery: Automated Synthesis, Compound Input, Assay Design and Process Management. Pesticide Science. John Wiley & Sons, Ltd December 1, 1998, pp 327–337.<327::AID-PS828>3.0.CO;2-C.
  2. C. Lamberth, S. Jeanmart, T. Luksch, A. Plant, Current challenges and trends in the discovery of agrochemicals, Science, 2013, Vol. 341, pp. 742–746.
  3. O. Ort, in Modern Crop Protection Compounds, W. Krämer, U. Schirmer, P. Jeschke, M. Witschel, Eds. (Wiley- VCH, Weinheim, Germany, 2012), pp. 50–88.
  4. M. A. Hanagan, R. J. Pasteris, R. Shapiro, Y. Henry, B. Klyashchitsky, paper presented at the 242nd American Chemical Society (ACS) National Meeting, Denver, CO, 28 August to 1 September 2011, abstr. no. AGRO-79.
  5. T. Pitterna et al., Bioorg. Med. Chem. 17, 4085–4095 (2009).
  6. A. Plant, Agrow Silver Jubilee Issue, XI–XV (2010).
  7. R. M. Hollingworth, in Agrochemical Discovery, D. R. Baker, N. K. Umetsu, Eds. (American Chemical Society, Washington, DC, 2001), pp. 238–255.
  8. C. L. Cantrell, F. E. Dayan, S. O. Duke, J. Nat. Prod. 75, 1231–1242 (2012).
  9. F. E. Dayan, C. L. Cantrell, S. O. Duke, Bioorg. Med. Chem. 17, 4022–4034 (2009). 
  10. C. Lamberth, Nachr. Chem. 55, 130–134 (2007).
  11. S. D. Lindell, L. C. Pattenden, J. Shannon, Bioorg. Med. Chem. 17, 4035–4046 (2009).
  12. L. Zirngibl, Antifungal Azoles (Wiley-VCH, Weinheim, Germany, 1998).
  13. K.-J. Schleifer, in Pesticide Chemistry, H. Ohkawa, H. Miyagawa, P. W. Lee, Eds. (Wiley-VCH, Weinheim, Germany, 2007), pp. 77–88.
  14. C. M. Tice, Pest Manag. Sci. 57, 3–16 (2001). 
  15. C. M. Tice, Pest Manag. Sci. 58, 219–233 (2002).
  16. C. Lamberth, J. Dinges, in Bioactive Heterocyclic Compound Classes - Agrochemicals, C. Lamberth, J. Dinges, Eds. (Wiley-VCH, Weinheim, Germany, 2012), pp. 3–20.
  17. P. Jeschke, in Modern Methods in Crop Protection Research, P. Jeschke, W. Krämer, U. Schirmer, M. Witschel, Eds. (Wiley-VCH, Weinheim, Germany, 2012), pp. 73–128.G.
  18. Theodoridis, in Fluorine and the Environment – Agrochemicals, Archaeology, Green Chemistry and Water, A. Tressaud, Ed. (Elsevier, Amsterdam, 2006), pp. 121–175.
  19. M. López-Ramos, F. Perruccio, J. Chem. Inf. Model. 50, 801–814 (2010).
This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used. By using our website, you accept our conditions of use of cookies to track data and create content (including advertising) based on your interest. Accept