Please sign in to download the files. A new tab will open where you can login/register.

Login

Cysteine Focused Covalent Inhibitor Library

This Cysteine-focused Screening Compound Library contains 13,900 potential covalent modifiers, containing specific structure moieties that could react with cysteine residues of a drug target reversibly or irreversibly.

We selected the most important functional groups that are known to target binding pockets of proteins through the formation of covalent bonds with cysteine amino acid residues based on available literature data [1-8]. Michael's acceptors are typical functionalities that are often introduced in structures of this type of covalent inhibitors, as well as fragments, capable of nucleophilic displacement or addition.

Covalently binding molecules focused on Cys residue were selected from the Life Chemicals HTS Compound Collection, employing the following covalent warheads (Fig. 1):

  • α,β-unsaturated ketones
  • α-chloracetamides
  • activated acetylenes
  • acrylonitriles
  • acrylamides
  • epoxides
  • methyl vinylsulfones
  • phenylsulphonate esters
  • aminomethyl methyl acrylathes
  • primary haloalkanes

The compounds were pre-filtered with the Rule of Five restrictions:

  • MW 150 - 500
  • ClogP -1 - 5
  • H-donors 0 - 5
  • H-acceptors 0 - 10
  • Rotatable bonds ≤ 10

Subsequently, machine learning methods (such as covalent fingerprints) and diversity filtering were applied to refine the full selection of potential cysteine covalent inhibitors to provide the Cys-focused Diversity Screening Set of over 3,800 drug-like cysteine covalent binders for covalent screening efforts in drug discovery.

The compound selection can be customized based on your requirements, cherry picking is available.

Please, contact us at orders@lifechemicals.com for any additional information and price quotations.

For a pre plated set based on this Screening Library, please explore our Pre-plated Focused Libraries.

You can also be interested in our related products:

Covalent warhead distribution for compounds in the Cysteine-focused Covalent Inhibitor Library

Figure 1. Covalent warhead distribution for compounds in the Cysteine-focused Covalent Inhibitor Library

Covalent warhead distribution for compounds in the Diversity Screening Set of the Cysteine-focused Covalent Inhibitor Library

Figure 2. Covalent warhead distribution for compounds in the Diversity Screening Set of the Cysteine-focused Covalent Inhibitor Library

Representative compounds from the Cysteine-focused Covalent Inhibitor Library

References

  1. S. G. Kathman, Z. Xu, A. V. Statsyk. J. Med. Chem., 2014, 57 (11), pp. 4969–4974.
  2. R. Mah, J. R. Thomas, C. M. Shafer Bioorg. Med. Chem. Lett., 2014, Vol. 24, pp. 33–39.
  3. Q. Liu, Y. Sabnis et. al. Cell Press: Chem. Biol., Vol. 20 (2), 2013, pp. 146–159.
  4. E. Weerapana, G.M. Simon, B.F. Cravatt Nature Chemical Bioogyl., Vol. 4, 2008, pp. 405–407.
  5. D. S. Johnson, E. Weerapana, B. F. Cravatt Future Med. Chem., Vol. 2 (6), 2010, pp. 949–964
  6. D. T. Warshaviak, G. Golan, K. W. Borrelli, K. Zhu, O. Kalid J. Chem. Inf. Model., 2014, 54 (7), pp. 1941–1950.
  7. K. Zhu, K. W. Borrelli, J. Greenwood, T. Day, R. Abel, R. Farid, E. Harder J. Chem. Inf. Model., 2014, 54 (7), pp. 1932 - 1940.
  8. Cohen MS, Zhang C, Shokat KM, Taunton J. Science, 2005, 308 (5726), pp. 1318–1321.
  9. Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016 Oct;12(10):876-84.
  10. He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018 Jun 29;9(1):2550.
  11. Lv Z, Yuan L, Atkison JH, Williams KM, Vega R, et al. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun. 2018 Dec 4;9(1):5145.
  12. Mukherjee H, Grimster NP. Beyond cysteine: recent developments in the area of targeted covalent inhibition. Curr Opin Chem Biol. 2018 Jun;44:30-38.
  13. Bum-Erdene K, Zhou D, Gonzalez-Gutierrez G, Ghozayel MK, at al. Small-Molecule Covalent Modification of Conserved Cysteine Leads to Allosteric Inhibition of the TEAD⋅Yap Protein-Protein Interaction. Cell Chem Biol. 2019 Mar 21;26(3):378-389.e13.
This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used. By using our website, you accept our conditions of use of cookies to track data and create content (including advertising) based on your interest. Accept